skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Austermann, J"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. na (Ed.)
    na 
    more » « less
  2. SUMMARY Fossil corals are commonly used to reconstruct Last Interglacial (∼125 ka, LIG) sea level. Sea level reconstructions assume the water depth at which the coral lived, called the ‘relative water depth’. However, relative water depth varies in time and space due to coral reef growth in response to relative sea level (RSL) changes. RSL changes can also erode coral reefs, exposing older reef surfaces with different relative water depths. We use a simplified numerical model of coral evolution to investigate how sea level history systematically influences the preservation of corals in the Bahamas and western Australia, regions which house >100 LIG coral fossils. We construct global ice histories spanning the uncertainty of LIG global mean sea level (GMSL) and predict RSL with a glacial isostatic adjustment model. We then simulate coral evolution since 132 ka. We show that preserved elevations and relative water depths of modelled LIG corals are sensitive to the magnitude, timing and number of GMSL highstand(s). In our simulations, the influence of coral growth and erosion (i.e. the ‘growth effect’) can have an impact on RSL reconstructions that is comparable to glacial isostatic adjustment. Thus, without explicitly accounting for the growth effect, additional uncertainty is introduced into sea level reconstructions. Our results suggest the growth effect is most pronounced in western Australia due to Holocene erosion, but also plays a role in the Bahamas, where LIG RSL rose rapidly due to the collapsing peripheral bulge associated with Laurentide Ice Sheet retreat. Despite the coral model's simplicity, our study highlights the utility of process-based RSL reconstructions. 
    more » « less
  3. Abstract As ice sheets load Earth's surface, they produce ice‐marginal depressions which, when filled with meltwater, become proglacial lakes. We include self‐consistently evolving proglacial lakes in a glacial isostatic adjustment (GIA) model and apply it to the Laurentide ice sheet over the last glacial cycle. We find that the locations of modeled lakes and the timing of their disappearance is consistent with the geological record. Lake loads can deflect topography by >10 m, and volumes collectively approach 30–45 cm global mean sea‐level equivalent. GIA increases deglaciation‐phase lake volume up to five‐fold and average along‐ice‐margin depth ≤90 m compared to glaciation‐phase ice volume analogs—differences driven by changes in the position and size of the peripheral bulge. Since ice‐marginal lake depth affects grounding‐line outflow, GIA‐modulated proglacial lake depths could affect ice‐sheet mass loss. Indeed, we find that Laurentide ice‐margin retreat rate sometimes correlates with proglacial lake presence, indicating that proglacial lakes aid glacial collapse. 
    more » « less
  4. Cosmic shear, galaxy clustering, and the abundance of massive halos each probe the large-scale structure of the Universe in complementary ways. We present cosmological constraints from the joint analysis of the three probes, building on the latest analyses of the lensing-informed abundance of clusters identified by the South Pole Telescope (SPT) and of the auto- and cross-correlation of galaxy position and weak lensing measurements ( 3 × 2 pt ) in the Dark Energy Survey (DES). We consider the cosmological correlation between the different tracers and we account for the systematic uncertainties that are shared between the large-scale lensing correlation functions and the small-scale lensing-based cluster mass calibration. Marginalized over the remaining Λ cold dark matter ( Λ CDM ) parameters (including the sum of neutrino masses) and 52 astrophysical modeling parameters, we measure Ω m = 0.300 ± 0.017 and σ 8 = 0.797 ± 0.026 . Compared to constraints from primary cosmic microwave background (CMB) anisotropies, our constraints are only 15% wider with a probability to exceed of 0.22 ( 1.2 σ ) for the two-parameter difference. We further obtain S 8 σ 8 ( Ω m / 0.3 ) 0.5 = 0.796 ± 0.013 which is lower than the measurement at the 1.6 σ level. The combined SPT cluster, DES 3 × 2 pt , and datasets mildly prefer a nonzero positive neutrino mass, with a 95% upper limit m ν < 0.25 eV on the sum of neutrino masses. Assuming a w CDM model, we constrain the dark energy equation of state parameter w = 1.1 5 0.17 + 0.23 and when combining with primary CMB anisotropies, we recover w = 1.2 0 0.09 + 0.15 , a 1.7 σ difference with a cosmological constant. The precision of our results highlights the benefits of multiwavelength multiprobe cosmology and our analysis paves the way for upcoming joint analyses of next-generation datasets. Published by the American Physical Society2025 
    more » « less
    Free, publicly-accessible full text available March 1, 2026